Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 16(17): 3082-3106, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364627

RESUMO

Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto-oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl-terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes such as c-JUN, c-MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small-molecule inhibitor resets the proteome of transformed cells towards a 'premalignant' state, and its inhibition synergizes with clinically established compounds used to target EGFRL858R -, BRAFV600E - or PI3KH1047R -driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early-stage lung tumours, and the observed synergism with current standard-of-care inhibitors holds the potential for improved targeting of established tumours.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Receptores ErbB/genética , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição , Ubiquitina Tiolesterase/genética
2.
Cell Biosci ; 12(1): 50, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477555

RESUMO

BACKGROUND: Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. RESULTS: We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. CONCLUSION: PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.

3.
Front Cell Dev Biol ; 9: 641618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738287

RESUMO

Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...